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ABSTRACT  

In this study, a multiscale finite element analysis coupled with the asymptotic expansion homogenization (AEH) method is employed to 

investigate the linear thermoelastic behavior of a porous medium. A stochastic method using a mixture of Gaussian functions distribution 

is used to generate microstructures. The simulated microstructures are produced based on the porosity of a Marcellus shale sample. The 

AEH method is used to determine the homogenized material properties of simulated random microstructures. A porous medium with 

material and transport properties that vary between the bedding layers and the matrix is generated. The influence of gas pressure, as well 

as thermal and mechanical loading on the porous medium is studied and the influence of the pore size and porosity of microstructures on 

the evolution of stress is investigated.   

1. INTRODUCTION  

Unconventional gas reservoirs are considered a significant energy source. The estimated recoverable natural gas in Marcellus shale alone 

is nearly 489 trillion cubic feet (Lora et al. (2016)). Unconventional reservoirs, namely shale, are significantly heterogeneous and porous 

materials with low permeability. The porosity of the rocks, along with the shape and size of the pore structures influence transport and 

mechanical properties of the shale. Experimental observations have demonstrated that the size of pore structures in the bedding layer is at 

least one order of magnitude larger than the pore size in the matrix (Arson et al. (2013)). Considering the importance of unconventional 

reservoirs, a fundamental study of core plug samples and porous microstructures subjected to mechanical and thermal loading, along with 

understanding the mechanical properties of rock samples are needed to advance techniques to increase the recovery of hydrocarbons 

beyond simple hydraulic fracturing. 

The mineralogical compositions, such as mineral grains, pores, pore networks etc., have a strong influence on mechanical and transport 

properties. Gas flow in ultra-tight reservoirs is a multi-scale process controlled by the pore size and connectivity in the porous media 

(Fang (2017)). Theoretically, the gas flow regimes are classified based on the Knudsen number (Kn), defined as a ratio of the molecular 

mean free path to pore radius: continuum or Darcy flow (Kn < 0.001), slip flow (0.001 < Kn < 0.1), transition flow (0.1 < Kn < 10) and 

free molecular flow (Kn > 10) (Ray et al. (2003)). Once the probability of the gas molecules collision with pores wall is higher than that 

the gas molecules, the continuum assumption is no longer valid. Therefore, several models have been developed considering Knudsen 

diffusion and advection flow driven by pressure gradient (Javadpour (2009), Civan (2010), Darabi et al. (2012) and Kazemi et al. (2015)). 

Javadpour (2009) provided an analytical model for apparent permeability that considers the complexity of flow such that as average pore 

size decreases, the model converges to the Knudsen diffusion model and as average pore size increases, the model converges to the 

continuum model. 

Determination of homogenized properties of polycrystalline rocks from a polished thin section of rock requires measuring crystallographic 

orientation of the minerals. The simplest and perhaps the most common methods to approximate the homogenized properties of 

heterogeneous media are the Voigt and Reuss bounds (Matthies and Humbert (1993) and Mainprice and Humbert (1994)). Single-particle 

approximations such as Mori-Tanaka and self-consistent methods constitute another class of homogenization techniques for determination 

of overall physical and thermo-mechanical properties of composite materials. The results of these analytical methods are generally in a 

close agreement with the available experimental data, however, the weakness of these methods is that they do not explicitly explain the 

influence of pores, grain shapes, grain distributions or grain-to-grain interactions. 

Asymptotic expansion homogenization (AEH) is an advanced numerical method to evaluate a wide variety of physical and thermo-elastic 

properties of heterogeneous materials with microstructures (Bensoussan et al. (1978), Chung et al. (2001), Alzina et al. (2007), Zhang et 

al. (2007), Vel and Goupee (2010), Goupee and Vel (2010) and Naus-Thijssen et al. (2011b)). By decoupling the local (micro) and a 

global (macro) length scales, AEH is proved to be a computationally efficient tool to evaluate the continuum field quantities in a localized 

region of interest. The objective of this study is to present a multiscale finite element analysis coupled with an AEH method to predict the 

variation of macroscopic stresses in the porous structure of a shale sample. To this end, first a heterogeneous two-phase random 

microstructure is created based on the porosity of Marcellus shale and subsequently the homogenized thermoelastic material properties 

are estimated. The porous medium with material properties that vary between the matrix and bedding layers is constructed and the 

influence of gas pressure, thermal and mechanical loading on the porous medium is investigated. Also, the influence of pore size and 

porosity on stress distribution in the microstructure porous media is addressed.  
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2. SIMULATION OF RANDOM MICROSTRUCTURES 

Figure 1 shows the structural details of shale at different length scales. The heterogeneous body consists of interconnected pores that are 

randomly distributed in a rock matrix. The representative material elements (RMEs) are generated to analyze the corresponding 

homogenized material properties of a rock sample. The length scale of RME is significantly small comparing to the macroscale length 

scale ( l L ). The two length scales are related by the ratio of the RME size to the macroscopic body size ( /l L  ) which is assumed 

to be a small number. 

 

Figure 1: (a) Schematic visualization of large scale structure, (b) CT image of Marcellus shale sample, and (c) generated 

heterogeneous porous material with random pore structures. 

 

Random morphology description functions (RMDFs) are used to generate microstructures similar to the Gaussian statistical field method, 

proposed by Robert and Teubner (1995). An RMDF is any arbitrary functions defined over a domain of interest to define the 

microstructural morphology. Assuming that the RME of interest occupies a domain designated by Y= [0,l]×[0,l], the RMDF is defined 

as a sum of two dimensional Gaussian functions over the region Y as  
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where N, ai, yi
1 , yi

2 and wi are the total number of Gaussian functions, values of random number chosen between -1 to 1, centers of 

Gaussian functions, and spatial widths of individual Gaussian functions, respectively. Figure 2 illustrates a sample RMDF generated over 

the domain Y with a random parameters ai, yi
1, yi

2 and for N = 800. With increasing the number of Gaussian functions in (1), the number 

of voids with irregular shapes embedded in the microstructure increases. 

 

Figure 2: (a) Realization of an RMDF generated with N = 800, (b) Microstructure sample with 5% porosity. 
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Figure 3 shows microstructural morphologies corresponding to the RMDFs for several porosity data. By increasing the porosity, the voids 

interconnect across the width of RME. 

 

Figure 3: Microstructure porous media with (a) 5%, (b) 10%, and (c) 27%.porosities  

 

3. MATHEMATICAL DESCRIPTION  

In this section, the steady-state transport equations for gas flow with the gas molar mass M, gas viscosity μ and average gas density ρ in a 

porous medium with the porosity of ϕ are presented. Also, an overview of the AEH method for thermoelasticity problem is addressed.  

3.1 Governing Equations 

The steady state continuity equation for the gas flow can be presented as  
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Here 
appk  and p are the apparent permeability and pressure, respectively. Darabi et al. (2012) have defined apparent permeability for a 

porous media considering the influence of the slip flow and Knudsen diffusion 
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where R is the gas constant, Rav is the average pore radius, τ is the tortuosity of the rock, Df is the fractal dimension of the pore surface, 

kD is the Darcy permeability, Dk is the Knudsen diffusion coefficient in porous media, δ is the ratio of normalized molecular size (dm) to 

local average pore diameter (dp), and α1 is the tangential momentum accommodation coefficient (TMAC). Further, the steady state heat 

conduction and Fourier’s law of heat conduction are defined by  
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with 
T  being the difference in temperature from the reference state, 

iq  the heat flux vector and  ij
 as the thermal conductivity tensor. 

Finally, the equilibrium equation and the constitutive relations for the rock are  
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where  ij
 and 

if  are the stress tensor and the body force per unit volume, respectively. The rock matrix is assumed to be a linear 

thermoelastic material with stiffness 

ijklC  and stress-temperature modulus 

ije ,  ij
 and 

ku  stand for the infinitesimal strain tensor and 

displacement filed, respectively.  

3.2 Asymptotic Expansion Homogenization Method  

Only the key aspects of AEH method are recalled here, detailed descriptions can be found in Vel and Goupee (2010), Goupee and Vel 

(2010) and Naus-Thijssen et al. (2011b). Two length scales are considered for the AEH method, namely the macro-scale length L and the 

width l of the microstructure sample (as shown in Figure 1a). Terada et al. (2000) and Fish et al. (2000) showed that the so called boundary 

effect error due to implementation of displacement or traction boundary conditions vanished by consideration of a periodic boundary 

condition. In this work, a heterogeneous material is constructed based on the following assumptions: (1) any macroscopic domain is 

formed by periodic assembly of RME, (2) the solution is locally periodic, and (3) the macroscale fields remain constant within RME. The 

AEH method is valid for calculating the bulk elastic properties of the rock as long as the small heterogeneous scales are sufficiently small 

(more than three orders of magnitude) compared to the macroscale, such that response fluctuations due to the small scale heterogeneity is 

averaged out. The porous medium is constructed by spatial arrangement of a representative random microstructure (Figure 4). The RME 

is generated based on the statistical method presented in the previous section. 

  

Figure 4: (a) The spatially periodic microstructure, (b) a porous RME, and (c) meshed RME for the finite element analysis. 
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The fluctuation of deformation at the micro level within the sample is proportional to the average macroscopic strains when the 

microstructure is subjected small deformations. The AEH method introduces characteristic functions χp
kl (y) that relate the microscale 

displacement fluctuations to the average macroscopic strains. The characteristic functions have the first-order correlation by considering 

microstructural features including the size, shape, elastic stiffness. The mechanical properties are determined using the characteristic 

functions and the spatially varying mechanical properties in the sample. The homogenized bulk stiffness tensor is defined as 

1
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where CH
ijkl is the homogenized stiffness tensor. The first term in the integrand represents the Voigt bound and the second is a correction 

to the Voigt bound. The characteristic functions χkl
p (y) were determined using a finite element analysis on the RME subjected to periodic 

boundary conditions. For periodic boundary conditions, the number equations for nodes on the left and right and nodes on the top and 

bottom of the microstructure are equal. In order to satisfy the degrees of freedom, all four nodes at the corner of the microstructures are 

zero without any loss of generality. 

4. DESCRIPTION OF COMPUTATIONAL MODEL 

A core cylindrical sample with length L=100 mm and a diameter of D=50 mm placed in a typical permeability chamber is used for the 

multiscale analysis (Figure 5). The sample includes stacks of parallel thin bedding layers separating thicker matrix layers, as often observed 

in microscopic images of Marcellus shale. The random heterogeneous microstructures are generated throughout the porous medium by 

consideration of different porosity between bedding and matrix layers. The bedding layers with 2 mm thickness are placed in between 7 

mm matrices with a porosity of 5%. Nitrogen gas is assumed to fill the pore for the purpose of permeability analysis. Due to the small 

difference in pressure across the sample, the mean pressure is considered for calculation of fluid properties and permeability. The material 

properties of Marcellus shale are listed in Table 1. 

Table 1: Material properties of Marcellus shale sample (Lora et al. (2016), Darabi et al. (2012)). 

Young’s modulus (E)  18 GPa 

Poisson’s ratio (υ)  0.15 

Thermal conductivity (κ)  1.8 

Thermal expansion coefficient (αT) 2.6×10-6 (K-1) 

Porosity (ϕ, matrix and bedding layers) 5 and 10 % 

Fractal dimension of the pore surface (α1) 2.2 

Tortuosity (τ) 2 

TMAC 0.9 

Average pore radius (Rav) 10 (nm) 

Temperature (T) 300 (K) 

 

The porous medium is subjected to a uniform distributed confining pressure (σc=20 MPa), the upstream and downstream pressures for 

gas flow are 6 and 4 MPa, respectively. A uniform temperature of Tc=350 K is applied on its upper and lower surfaces whereas both ends 

of the sample are kept at a constant temperature Ts=300 K. The gas flow is assumed to be in one dimension along the length of the sample. 

Due to the symmetry in geometry, only a half of the domain is analyzed. The origin of the global Cartesian coordinate system is attached 

to the left corner of the plane of symmetry (Figure 5) and a two-dimensional plane strain analysis is performed at the macroscopic level. 

 

Figure 5 (a-b): Schematic diagram of core sample with parallel bedding layers and assumed boundary conditions. 
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5. RESULTS 

At the first step, the AEH method is used to determine the homogenized material properties at each layer. Figure 6 shows the results of a 

convergence analysis to find the thermal conductivity H , thermal expansion coefficient 
H
T , and Young’s modulus HE  of matrix layer 

with increasing the number of elements Ne. Four-node quadrilateral elements are used to generate the mesh into the microstructure porous 

medium. The number of elements is normalized by the number of Gaussian functions N used to create the random microstructure (as 

shown in Figure 4c). As expected, with increasing the number of elements and capturing the complexity of microstructural morphology 

of the porous medium the homogenized material properties converge to a unique value. The numerical results show that the homogenized 

material properties converge at the ratio /eN N  equal to 3 or larger. /eN N = 3.9 is selected for the studies presented here. The 

homogenized material properties of different layers of porous medium are listed in Table 2. 

 

Figure 6: Convergence analysis of homogenized (a) thermal conductivity, (b) thermal expansion coefficient, and (c) Young’s 

modulus. 

 

Table 2: Homogenized material properties of Marcellus shale sample. 

 Matrix ϕ=5% Bedding layer ϕ=10% 

Young’s modulus (EH) 17.05 GPa 15.15 GPa 

Poisson’s ratio (υ)  0.15 0.15 

Thermal conductivity (κH) 1.656 (W/m.K) 1.478 (W/m.K) 

Thermal expansion coefficient (αH
T) 2.39×10-6 (K-1) 2.136×10-6 (K-1) 

Apparent permeability (kapp) 2.1245×10-13 (m2) 4.2491×10-12 (m2) 

 

At the next step, the distribution of different thermoelastic field quantities are evaluated in the porous medium. The domain is discretized 

using a total of 8000 four-node quadrilateral elements. The distribution of gas pressure in the porous medium is shown by Figure 7. The 

lateral sides of core holder are assumed to be impermeable and therefore, the gas pressure uniformly changes along the length of the 

porous medium. Similar results are presented by Naraghi and Javadpour (2015) and Sun et al. (2011b). The apparent permeability in the 

bedding layer and the matrix are found to be 4.2491×10-12 m2 and 2.1245×10-13 m2, respectively. 
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Figure 7: Pressure distribution of the steady-state fluid flow of the porous medium. 

 

Figure 8a shows the macroscopic temperature distribution in the porous medium. The thermal conductivity of the bedding layers is lower 

than the matrices as a result of higher porosity and larger fraction of empty spaces that act as thermal insulators. Therefore, temperature 

drop is more significant in the bedding layer in comparison with that in the matrix. The spatial variation of macroscopic components of 

stresses ( 11 , 22 and 12 ) are depicted in Figure 8b-d. The pressure field induced by the gas flow and is transferred to the boundary of 

the porous medium. The critical locations are on both ends of the middle region of the porous medium and the peak stresses are found to 

be 11 = 266.78 MPa and 22 = 25.21 MPa. 

 

Figure 8: Contour plots of (a) temperature and macroscopic stress components (b) 11  , (c) 22 , and (d) 12 . 

 

Two specific microstructures with porosities of 5% and 10% at the right corner of symmetry plane (subjected to compressive stresses) are 

selected for micromechanical studies. The micro stresses
0
11 ,

0
22  and 

0
12  corresponding to the microstructures with porosities of 5% 

and 10% are shown in Figure 9a-f. The average pore diameters slightly decrease in response to a compressive loading. As porosity 

increases from 5% in the matrix to 10% in the bedding layer, the magnitudes of micro stresses increase almost by one order of magnitude. 

In the bedding layers with 10% porosity, localized bands of highly stressed regions are formed that connect the pores. In addition, the 

concentration of micro stresses around the packed pore structures is considerably higher than the rest of the matrix. 
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Figure 9: Contour plots of microscopic stress components (a) 
0
11 , (b) 

0
22 , and (c) 

0
12  for microstructure with 5% porosity and 

(d) 
0
11 , (e) 

0
22 , and (f) 

0
12  for microstructure with 10% porosity. 

 

Figures 10a-f show the microscopic stress distribution 
0
11  in several microstructure realizations while the porosity is considered to be 

constant and equal to 10%. The microstructure are located at the right corner of the symmetry plane. Again, the results show that the pore 

arrangement is a dominant factor in determination of micro stress distribution. A band of areas with high concentration of stress (and 

strain) is formed between the adjacent pore structures. It is anticipated that such localized deformation significantly reduces the strength 

of the whole porous medium and leads to material failure. 

 

Figure 10: Contour plots of microscopic stress component 
0
11  for several microstructure realizations (a-f) with 10% porosity in 

a bedding layer. 
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Figure 11 shows the microscopic stress distribution 
0
11  in the microstructures with a constant porosity of 10% while the number of pore 

structures has been increased by changing the number of Gaussian functions. Increasing the number of Gaussian functions results in 

decreasing the pore size while the porosity remains constant. As the number of pore structures increases, localized bands of regions with 

high intensity of micro stresses are formed between the pores. Moreover, the irregular shape and the orientation of pore structures show a 

significant effect on the micro stress evolution in the porous media. 

 

Figure 11: Contour plots of microscopic stress component 
0
11  for microstructures with 10% porosity in a bedding layer and (a) 

N=400, (b) N=800, and (c) N=2500. 

 

6. CONCLUSIONS AND RECOMMENDATIONS 

A multiscale computational methodology is introduced to analyze the distribution of stress in heterogeneous microstructure of Marcellus 

shale. Random porous microstructures are generated with porosities comparable with the results of microscopic imaging on shale samples. 

The homogenized material properties are determined using AEH method. A finite element discretization scheme coupled with AEH is 

used to compute the field variables, including the gas pressure and different components of stress. It is demonstrated that the apparent 

permeability of the bedding layer is more than that of the matrix. Within the range of elastic deformations, the permeability of shale 

sample decreases in response to the applied compressive loading. Thermal properties of microstructures appear to be weak in the bedding 

layers comparing to those in the matrix and heat is essentially transferred via the rock matrix. In high porosity microstructures, the highest 

micro stresses occur in regions where the pores are closely spaced and form a narrow localized bands connecting the adjacent pores. Pore 

density is a dominant factor for localization of micro stress and damage is likely to occur between the packed pores. The irregular shape 

and the orientation of pore structures have a significant effect on the microscopic stresses in the porous media. 
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